REPLIKASI





Tugas Review Biologi Molekuler
REPLIKASI

a.        Replikasi dan Permodelan dalam Replikasi
Replikasi adalah peristiwa sintesis DNA. Saat suatu sel membelah secara mitosis, tiap-tiap sel hasil pembelahan mengandung DNA penuh dan identik seperti induknya. Dengan demikian, DNA harus secara tepat direplikasi sebelum pembelahan dimulai. Replikasi DNA dapat terjadi dengan adanya sintesis rantai nukleotida baru dari rantai nukleotida lama. Proses komplementasi pasangan basa menghasilkan suatu molekul DNA baru yang sama dengan molekul DNA lama sebagai cetakan.
Replikasi DNA mempunyai tiga model yaitu:
  1. Model konservatif : heliks ganda induk tetap dalam keadaan utuh dan sebuah salinan kedua yang sama sekali baru telah dibuat.
  2. Model semikonservatif : kedua untai molekul induk berpisah, dan setiap untai berfungsi sebagai cetakan untuk mensintesis untai komplementer yang baru
  3. Model dispersif : setiap untai dari kedua molekul anak terdiri dari campuran antara bagian untaian yang baru disintesis.
Di  antara  ketiga  cara  replikasi  DNA  yang  diusulkan  tersebut,  hanya  cara
semikonservatif yang dapat dibuktikan kebenarannya melalui percobaan yang dikenal
dengan  nama  sentrifugasi  seimbang  dalam  tingkat  kerapatan  atau  equilibrium
density-gradient centrifugation. Percobaan ini dilaporkan hasilnya pada tahun 1958 oleh
 M.S. Meselson dan F.W. Stahl.
Mereka menumbuhkan bakteri Escherichia coli selama beberapa generasi di dalam medium  yang  mengandung  isotop  nitrogen  15N  untuk  menggantikan  isotop  nitrogen  normal 14N yang lebih ringan. Akibatnya, basa-basa nitrogen pada molekul DNA sel-sel bakteri tersebut akan memiliki 15N yang berat. Molekul DNA dengan basa nitrogen yang mengandung  15N mempunyai tingkat kerapatan  (berat per satuan volume) yang lebih tinggi  daripada  DNA  normal (14N).  Oleh  karena  molekul-molekul  dengan  tingkat kerapatan yang berbeda dapat dipisahkan dengan cara sentrifugasi tersebut di atas, maka Meselson dan Stahl dapat mengikuti perubahan tingkat kerapatan DNA sel-sel bakteri E. coli yang semula ditumbuhkan pada medium 15N selama beberapa generasi, kemudian dikembalikan ke medium normal 14N selama beberapa generasi berikutnya. Molekul DNA mempunyai kerapatan yang lebih kurang sama dengan kerapatan larutan garam yang sangat pekat seperti larutan  6M CsCl (sesium khlorida). Sebagai perbandingan, kerapatan DNA E.coli dengan basa nitrogen yang mengandung isotop 14N dan  15N  masing-masing  adalah  1,708  g/cm3  dan  1,724  g/cm3,  sedangkan  kerapatan larutan 6M CsCl adalah 1,700 g/cm3.
Ketika larutan  6M CsCl yang di dalamnya terdapat molekul DNA disentrifugasi dengan kecepatan sangat tinggi, katakanlah 30.000 hingga 50.000 rpm, dalam waktu 48 hingga  72  jam,  maka  akan  terjadi  keseimbangan  tingkat  kerapatan.  Hal  ini  karena molekul-molekul  garam  tersebut  akan  mengendap  ke  dasar  tabung sentrifuga akibat adanya  gaya  sentrifugal,  sementara  di  sisi  lain  difusi  akan  menggerakkan  molekulmolekul garam kembali ke atas tabung. Molekul DNA dengan tingkat kerapatan tertentu akan menempati kedudukan yang sama dengan kedudukan larutan garam yang tingkat kerapatannya sama dengannya.

b.        Replikasi DNA Prokariota
Replikasi DNA kromosom prokariot, khususnya bakteri, sangat berkaitan dengan siklus pertumbuhannya. Daerah ori pada E. coli, misalnya, berisi empat buah tempat pengikatan protein inisiator DNA, yang masing-masing panjangnya 9 pb. Sintesis protein DNA ini sejalan dengan laju pertumbuhan bakteri sehingga inisiasi replikasi juga sejalan dengan laju pertumbuhan bakteri. Pada laju pertumbuhan sel yang sangat tinggi, DNA kromosom prokariot dapat mengalami reinisiasi replikasi pada dua ori yang baru terbentuk, sebelum putaran replikasi yang pertama berakhir. Akibatnya, sel-sel hasil pembelahan akan menerima kromosom yang sebagian telah bereplikasi.
Protein DNA membentuk struktur kompleks yang terdiri atas 30 hingga 40 buah molekul, yang masing-masing akan terikat pada molekul ATP. Daerah ori akan mengelilingi kompleks DNA-ATP tersebut. Proses ini memerlukan kondisi superkoiling negatif DNA (pilinan kedua untai DNA berbalik arah sehingga terbuka). Superkoiling negatif akan menyebabkan pembukaan tiga sekuens repetitif sepanjang 13 pb yang kaya dengan AT sehingga memungkinkan terjadinya pengikatan protein DnaB, yang merupakan enzim helikase, yaitu enzim yang akan menggunakan energi ATP hasil hidrolisis untuk bergerak di sepanjang kedua untai DNA dan memisahkannya.
Untai DNA tunggal hasil pemisahan oleh helikase selanjutnya diselubungi oleh protein pengikat untai tunggal atau single-stranded binding protein (Ssb) untuk melindungi DNA untai tunggal dari kerusakan fisik dan mencegah renaturasi. Enzim DNA primase kemudian akan menempel pada DNA dan menyintesis RNA primer yang pendek untuk memulai atau menginisiasi sintesis pada untai pengarah. Agar replikasi dapat terus berjalan menjauhi ori, diperlukan enzim helikase selain DnaB. Hal ini karena pembukaan heliks akan diikuti oleh pembentukan putaran baru berupa superkoiling positif. Superkoiling negatif yang terjadi secara alami ternyata tidak cukup untuk mengimbanginya sehingga diperlukan enzim lain, yaitu topoisomerase tipe II yang disebut dengan DNA girase. Enzim DNA girase ini merupakan target serangan antibiotik sehingga pemberian antibiotik dapat mencegah berlanjutnya replikasi DNA bakteri.
Seperti telah dijelaskan di atas, replikasi DNA terjadi baik pada untai pengarah maupun pada untai tertinggal. Pada untai tertinggal suatu kompleks yang disebut primosom akan menyintesis sejumlah RNA primer dengan interval 1.000 hingga 2.000 basa. Primosom terdiri atas helikase DnaB dan DNA primase. Primer baik pada untai pengarah maupun pada untai tertinggal akan mengalami elongasi dengan bantuan holoenzim DNA polimerase III. Kompleks multisubunit ini merupakan dimer, separuh akan bekerja pada untai pengarah dan separuh lainnya bekerja pada untai tertinggal. Dengan demikian, sintesis pada kedua untai akan berjalan dengan kecepatan yang sama.
Masing-masing bagian dimer pada kedua untai tersebut terdiri atas subunit a, yang mempunyai fungsi polimerase sesungguhnya, dan subunit e, yang mempunyai fungsi penyuntingan berupa eksonuklease 3’– 5’. Selain itu, terdapat subunit b yang menempelkan polimerase pada DNA. Begitu primer pada untai tertinggal dielongasi oleh DNA polimerase III, mereka akan segera dibuang dan celah yang ditimbulkan oleh hilangnya primer tersebut diisi oleh DNA polimerase I, yang mempunyai aktivitas polimerase 5’– 3’, eksonuklease 5’ – 3’, dan eksonuklease penyuntingan 3’ – 5’. Eksonuklease 5’ ® 3’ membuang primer, sedangkan polimerase akan mengisi celah yang ditimbulkan. Akhirnya, fragmen-fragmen Okazaki akan dipersatukan oleh enzim DNA ligase. Secara in vivo, dimer holoenzim DNA polimerase III dan primosom diyakini membentuk kompleks berukuran besar yang disebut dengan replisom. Dengan adanya replisom sintesis DNA akan berlangsung dengan kecepatan 900 pb tiap detik.
Kedua garpu replikasi akan bertemu kira-kira pada posisi 180°C dari ori. Di sekitar daerah ini terdapat sejumlah terminator yang akan menghentikan gerakan garpu replikasi. Terminator tersebut antara lain berupa produk gen tus, suatu inhibitor bagi helikase DnaB. Ketika replikasi selesai, kedua lingkaran hasil replikasi masih menyatu. Pemisahan dilakukan oleh enzim topoisomerase IV. Masing-masing lingkaran hasil replikasi kemudian disegregasikan ke dalam kedua sel hasil pembelahan.

c.         Replikasi DNA Eukariota
Pada eukariot replikasi DNA hanya terjadi pada fase S di dalam interfase. Untuk memasuki fase S diperlukan regulasi oleh sistem protein kompleks yang disebut siklin dan kinase tergantung siklin atau cyclin-dependent protein kinases (CDKs), yang berturut-turut akan diaktivasi oleh sinyal pertumbuhan yang mencapai permukaan sel. Beberapa CDKs akan melakukan fosforilasi dan mengaktifkan protein-protein yang diperlukan untuk inisiasi pada masing-masing ori.
Berhubung dengan kompleksitas struktur kromatin, garpu replikasi pada eukariot bergerak hanya dengan kecepatan 50 pb tiap detik. Sebelum melakukan penyalinan, DNA harus dilepaskan dari nukleosom pada garpu replikasi sehingga gerakan garpu replikasi akan diperlambat menjadi sekitar 50 pb tiap detik. Dengan kecepatan seperti ini diperlukan waktu sekitar 30 hari untuk menyalin molekul DNA kromosom pada kebanyakan mamalia.
Sederetan sekuens tandem yang terdiri atas 20 hingga 50 replikon mengalami inisiasi secara serempak pada waktu tertentu selama fase S. Deretan yang mengalami inisasi paling awal adalah eukomatin, sedangkan deretan yang agak lambat adalah heterokromatin. DNA sentromir dan telomir bereplikasi paling lambat. Pola semacam ini mencerminkan aksesibilitas struktur kromatin yang berbeda-beda terhadap faktor inisiasi.
Seperti halnya pada prokariot, satu atau beberapa DNA helikase dan Ssb yang disebut dengan protein replikasi A atau replication protein A (RP-A) diperlukan untuk memisahkan kedua untai DNA. Selanjutnya, tiga DNA polimerase yang berbeda terlibat dalam elongasi. Untai pengarah dan masing-masing fragmen untai tertinggal diinisiasi oleh RNA primer dengan bantuan aktivitas primase yang merupakan bagian integral enzim DNA polimerase a. Enzim ini akan meneruskan elongasi replikasi tetapi kemudian segera digantikan oleh DNA polimerase d pada untai pengarah dan DNA polimerase e pada untai tertinggal. Baik DNA polimerase d maupun e mempunyai fungsi penyuntingan. Kemampuan DNA polimerase d untuk menyintesis DNA yang panjang disebabkan oleh adanya antigen perbanyakan nuklear sel atau proliferating cell nuclear antigen (PCNA), yang fungsinya setara dengan subunit b holoenzim DNA polimerase III pada E. coli. Selain terjadi penggandaan DNA, kandungan histon di dalam sel juga mengalami penggandaan selama fase S.
Mesin replikasi yang terdiri atas semua enzim dan DNA yang berkaitan dengan garpu replikasi akan diimobilisasi di dalam matriks nuklear. Mesin-mesin tersebut dapat divisualisasikan menggunakan mikroskop dengan melabeli DNA yang sedang bereplikasi. Pelabelan dilakukan menggunakan analog timidin, yaitu bromodeoksiuridin (BUdR), dan visualisasi DNA yang dilabeli tersebut dilakukan dengan imunofloresensi menggunakan antibodi yang mengenali BUdR.
Ujung kromosom linier tidak dapat direplikasi sepenuhnya karena tidak ada DNA yang dapat menggantikan RNA primer yang dibuang dari ujung 5’ untai tertinggal. Dengan demikian, informasi genetik dapat hilang dari DNA. Untuk mengatasi hal ini, ujung kromosom eukariot (telomir) mengandung beratus-ratus sekuens repetitif sederhana yang tidak berisi informasi genetik dengan ujung 3’ melampaui ujung 5’. Enzim telomerase mengandung molekul RNA pendek, yang sebagian sekuensnya komplementer dengan sekuens repetitif tersebut. RNA ini akan bertindak sebagai cetakan (templat) bagi penambahan sekuens repetitif pada ujung 3’.
Hal yang menarik adalah bahwa aktivitas telomerase mengalami penekanan di dalam sel-sel somatis pada organisme multiseluler, yang lambat laun akan menyebabkan pemendekan kromosom pada tiap generasi sel. Ketika pemendekan mencapai DNA yang membawa informasi genetik, sel-sel akan menjadi layu dan mati. Fenomena ini diduga sangat penting di dalam proses penuaan sel. Selain itu, kemampuan penggandaan yang tidak terkendali pada kebanyakan sel kanker juga berkaitan dengan reaktivasi enzim telomerase.

Baca Juga
Transkripsi DNA


Komentar